Apply Give

RESEARCH ENTERPRISE

Associate Center Director

Mark DeCoster, Ph.D., Associate Director of CBERS, Professor of Biomedical Engineering, Institute for Micromanufacturing
The Cellular Neuroscience Lab, Location: Biomedical Engineering Center, 235 and 210; Institute for Micromanufacturing, 215

Dr. DeCoster’s laboratory is designed for biochemical and digital imaging analysis of cellular events in the brain. Currently planned activities include brain cell inflammatory responses, digital imaging of apoptosis in normal and brain tumor cells and response of brain glial cells to injury. Major equipment includes PC- and Mac-based imaging workstations (4); motorized inverted fluorescence microscope with a digital camera (Leica).

Research Faculty

Prabhu Arumugam, Ph.D., Associate Professor of Mechanical Engineering
Advanced Materials Research Laboratory, Location: Institute for Micromanufacturing, 213

Dr. Arumugam’s research interests are carbon nanomaterial synthesis and characterization, nano-bio-neuro electrochemical sensors for point-of-care diagnostics, biomedical coatings, advanced oxidation processes for water treatment, and electrodes for energy storage. The current research focus is to engineer novel electrode geometries and material compositions using micro-nanofabrication techniques and to advance the chemical neuroscience field for brain disorder treatments.

Thomas Bishop, Ph.D., Associate Professor of Chemistry and Physics
Theoretical Molecular Biology Lab, Location: Biomedical Engineering Center, 231

Dr. Bishop’s research interests are theoretical and computational molecular biology, with a particular emphasis in molecular modeling and molecular dynamics simulations of proteins and DNA. The current focus is on developing workflows and a scientific gateway for atomic and coarse-grained modeling of DNA, nucleosomes, and chromatin.

Mary Caldorera-Moore, Ph.D., Associate Professor of Biomedical Engineering
Therapeutic Micro- and Nanotechnology Biomaterial Laboratory, Location: Biomedical Engineering Center, 207

Dr. Caldorera-Moore’s lab focuses on the development of innovative approaches to long-term drug release and targeted cell-specific drug delivery. Our research combines microscale and nanoscale technologies with intelligent biomaterials to create new and improved ways to deliver therapeutic agents to target sites in the body. Research in the lab focuses on the design, fabrication, characterization, and use of advanced micro/nano biosystems for targeted delivery.

William Campbell, Ph.D., Director of the School of Biological Sciences, Location: PML, 913

Dr. Campbell’s research interests are protein analysis, and environmental physiology/biochemistry.

Sumeet Dua, Ph.D., Associate Vice President for Research and Partnerships
Location: Wyly Tower, 1642

Dr. Dua’s research specialization is Data Mining, Computational Decision Support, Structural Bioinformatics Biological System Modeling, Multi-modality Fusion, and Biomedical Imaging. Dr. Dua’s laboratory designs and implements high-performance algorithms and software “Cybertools” for data mining and computerized learning. These algorithmic tools discover, classify, and exploit trends, patterns, and anomalies in large volumes of data. The laboratory also develops unsupervised and supervised algorithmic routines for sequential, temporal, and associative pattern discovery in spatiotemporal spaces. These algorithmic routines have applications in gene expression and protein sequence/structure datasets-based analytics (supported by NIH). Recent efforts have focused on extracting and isolating protein structural features that sustain invariance in evolutionary-related proteins through the integrated and localized analysis of hydrophobicity and other physicochemical properties. Dr. Dua’s team is currently investigating such methods to computationally characterize biological resistance to freezing, desiccation, and radiation, to improve technologies for the detection and sampling of microorganisms under conditions similar to those found on the surface of Mars. Other applications of such data-mining methods include automated detection, identification, and tracking of patterns of (hostile) “targets” using multi-sensor satellite imagery and network data (for the U.S. Air Force).

Sven Eklund, Ph.D., Associate Professor of Chemistry
Location: Carson-Taylor Hall, 331

Dr. Eklund’s research interests involve designing and implementing extracellular biosensors for monitoring cell metabolism in various environments. Sensors are based on electrochemical or fluorescent signals that are used to measure multiple analytes concurrently in real-time (glucose, lactate, oxygen, pH, Ca2+, K+, etc.). He also is exploring the electrodeposition of thin films of tantalum metal from ionic liquids for coating of medical implants.

Katie Evans, Ph.D., Associate Dean for Strategic Initiatives, Director of Mathematics and Statistics and Online Programs, Entergy LP&L/NOPSI #3 & #4 Associate Professor of Mathematics and Statistics
Location: Bogard, 201C

Dr. Katie Evans is the Entergy LP&L/NOPSI Endowed Associate Professor of Mathematics and Statistics, the Associate Dean for Strategic Initiatives, and the Director of Mathematics and Statistics and Online Programs. She is the Director of the Integrated STEM Education Research Center (ISERC) and the Director of the Office for Women in Science and Engineering. She earned her Ph.D. in Mathematics and M.S. in Mathematics at Virginia Tech, Blacksburg, VA. Her research interests include distributed parameter control modeling and simulation, dynamic modeling of physical systems, and STEM education. Her research has been funded by the NSF, AFRL, and LA-BOR. She is a member of the IEEE, MAA, SIAM, and ASEE.

Rebecca Giorno-McConnell, Ph.D., Associate Professor of Biological Sciences
Location: Carson-Taylor Hall, 219

Dr. Giorno-McConnell’s research interests involve the protein coatings that encase bacterial spores and allow them to survive harsh environments. She studies the assembly of the coat and the exosporium in the spore-forming bacteria Bacillus anthracis. Her work is done in the attenuate Sterne strain of B. anthracis.

Eric Guilbeau, Ph.D., Professor Emeritus of Biomedical Engineering

Dr. Guilbeau develops thermoelectric methods for applied biotechnology and biosensors. Activities include the development of microfluidic devices that utilize thermoelectric sequencing by incorporation methods to sequence DNA for SNP detection and to detect DNA hybridization events. He also uses thermoelectric methods to design novel biosensors for the detection of biologically active substances that are important for normal and abnormal biological and physiological function and to create gas sensors that can detect biologically important substances in the breath or toxic substances in the environment. Both experimental and modeling approaches are used as part of the design, development and characterization activities.

Bryant Hollins, Ph.D., Lecturer of Biomedical Engineering
The Oxidative Stress Research Lab, Location: Biomedical Engineering Center, 211

The oxidative stress research lab studies proteins that are prone to oxidative stress in neurodegenerative diseases. One of the things we seek to determine is the interplay between these proteins and other biomacromolecules. The ultimate goal is to discover new protein therapeutic targets in neurodegenerative diseases, such as Alzheimer’s disease.

Jane Jacob, Ph.D., Assistant Professor of Psychology and Behavioral Sciences
Location: Woodard Hall 116A

Dr. Jacob’s research interests are in the area of visual information processing; specifically, she is interested in how humans process information over the first few seconds of viewing it. Her work explores the temporal dynamics of information transfer across sensory iconic and short-term visual memories, using behavioral and electroencephalography (EEG) methodologies to learn about visual cognitive mechanisms and the neural underpinnings of information processing across different memory registers. Relatedly, she also studies the role of attention and (phenomenal) consciousness in early visual memory processing.

Steven Jones, Ph.D., Associate Professor and Program Chair of Biomedical Engineering
The Biofluid Mechanics Laboratory, Location: Biomedical Engineering Center, 206

Dr. Jones’ research interests stem from biomedical applications of fluid dynamics. Applications include the improvement of Doppler ultrasound instruments for velocity measurement, modeling of pressure-flow relationships in the vascular access grafts used for dialysis, and modeling of the effects of transport and flow on the positive feedback and negative feedback control mechanisms for platelet activation and adhesion. The laboratory includes laser Doppler velocimetry equipment, a cone-in plate viscometer, a data acquisition computer, various PC computers, ultrasonic equipment, an anti-vibration table, a spectrum analyzer, physiological pressure transducers, Carolina Medical electromagnetic flow meters, a transit time flow meter, model manufacturing facilities, a single syringe infusion pump and a 10-syringe infusion pump.

Xiyuan Liu, Ph.D., Assistant Professor of Statistics
Mathematics and Statistics, Location: Nethken Hall, 223

Our research focuses on the application and theoretical improvement of machine learning models. The research area involves bioinformatics, longitudinal data analysis, Bayesian model, neural network, graphic model, generalized linear model, and discriminative model.

Yuri Lvov, Ph.D., Professor of Chemistry
The Nanoassembly Laboratory, Location: Institute for Micromanufacturing, 217, Biomedical Engineering Center, 236

Dr. Lvov’s laboratory focus is on developing nanotechnology including nanoassembly of ultrathin organized films, bio/nanocomposites, nano/construction of ordered shells on tiny templates (drug nanocapsules, shells on microbes and viruses), clay nanotubes for controlled release of bioactive agents. Yuri Lvov was among the pioneers of the polyelectrolyte layer-by-layer (LbL) assembly, a nanotechnology method which, after the first papers in 1993, was followed by many thousands of publications by researchers from all over the world. LbL nanoassembly has already been used in industrial applications for eye lens modification, improvement of cellulose fiber for better fabric and paper, microcapsules for insulin sustained release, cancer drug nanocapsules, and others. The basic principle of our research is nanoarchitectonic, and we develop: 1) nanoassembly approach in biomimetic engineering; 2) smart nanocontainers, nanocapsules and nanotubes for drug targeted and controlled delivery; stem cell and microbe encapsulation; 3) integrated nano/micro/macro-organized tissue scaffolds (in collaboration with Mark DeCoster and David Mills).

David Mills, Ph.D., Professor of the School of Biological Sciences
The BioMorph Laboratories, Location: Biomedical Engineering Center, 238 and Location: Biomedical Engineering Center, 151

The BioMorph Laboratory
Dr. Mills’ BioMorph Laboratory is used for designing novel and dynamic nanofilms (biodegradable, bioactive, micropatterned) for cell adhesion, differentiation and functionality; nanoassembly for dental & orthopedic implants; layer-by-layer assembly for cell encapsulation; application of nanoscale topographic and chemical cues for controlling chondro- and osteogenesis; understanding complex soft tissue modeling during development and remodeling in response to altered joint mechanics; structure-function relationships in TMJ soft tissues, engineering tissues for TMJ repair or replacement.

Teresa A. Murray, Ph.D., Associate Professor of Biomedical Engineering
The Integrated Neuroscience and Imaging Laboratory, Location: Biomedical Engineering Center, 132

Dr. Murray’s research goals are to expand the reach and functionality of micro-optics for neuroscience applications and to create living bio-optical systems using molecular and cellular engineering. She plans to incorporate electrodes for field potential recording into implantable micro-optic devices and perform time-course experiments. Her main aim is to connect receptor dynamics, neural circuit function and behavior through in vivo fluorescence imaging, neural recording, and behavioral experiments. This concerted approach will streamline experiments, enable unparalleled comparative analysis and elucidate connections not possible using multiple, discrete experiments. Additionally, this system will facilitate studies of neural dynamics and behavior in drug addiction, neurodegeneration, and stem cell therapy. While her focus has been on neuroscience, the tools and techniques she has developed have broad applications for life sciences and translational research.

Stanley A. Napper, Ph.D.,  Professor Emeritus of Biomedical Engineering

Dr. Napper participates at various levels in Engineering Education research. Earlier research activities have included Biomedical Engineering applications of artificial intelligence and mathematical modeling of physiological systems.

Gergana G. Nestorova, Ph.D., Associate Professor of Biological Sciences
The Applied Genomics and Biotechnology Lab, Location: Biomedical Engineering Center, 152

Dr. Nestorova’s research interests are focused on the development of lab-on-a-chip technologies for integrated genomics and proteomics analysis and investigation of microRNAs function in the post-translational regulation of gene expression. Research activities involve the development of microfluidics system for ultrasensitive purification and quantification of microRNAs from low cell number and identification of novel microRNAs that regulate the activity of DNA repair proteins.

Jamie Newman, Ph.D., Associate Dean for Graduate Studies and Research, College of Applied and Natural Sciences, Professor of Biological Sciences
The Stem Cell Research Lab, Location: Carson-Taylor Hall, 242

Dr. Newman’s research interests center around understanding gene expression during cellular differentiation and transformations. She has a particular interest in using stem cells to better understand patterns of differentiation in mammalian development using a variety of molecular biology techniques, imaging, and collaborations with people in areas of biomedical engineering.

Randal E. Null, Ph.D., Professor of Biomedical Engineering
Location: Biomedical Engineering Center, 228

Dr. Null provides leadership to Louisiana Tech University and the State of Louisiana by providing national quality higher education in research and development areas that improve energy systems, cyberspace security, medical technology, fundamental nanotechnology processes, biological/chemical/physical sensors, and other cutting-edge science and technology.

Scott Poh, Ph.D., Assistant Professor of Chemistry
Dr. Poh’s Research Group, Location: Carson-Taylor Hall, 239

Dr. Poh’s research interests involve developing diagnostic and therapeutic applications that possess adept properties and functions to target inflammatory diseases, cancer and/or infectious pathogens.  We also prepare a variety of small molecules to macroscale architectures such as multi-functional nanoparticles, nanogels, liposomes, and nanofibers. Our research focuses on chemical syntheses, characterization and the understanding of chemical, physical, biological properties, and application.

Adarsh D. Radadia, Ph.D., Associate Professor of Chemical Engineering
Bio-Nanomaterials Interface Design & Applications Laboratory
Location: Biomedical Engineering Center, 218 and 220C

Dr. Radadia specializes in medical diagnostics for bacteria, viruses, and relevant protein and nucleic acid biomarkers; bio-physical-chemical interactions at the surface of carbon nanomaterials, especially graphene and nanodiamonds.

Shabnam Siddiqui, Ph.D., Research Assistant Professor of CBERS
Location:
Biomedical Engineering Center, 202

Dr. Siddiqui’s research focus on the development of mathematical and computational models for studying electrical and chemical properties of Nanomaterials enabled electrodes for applications in biological, neuro-chemical sensing and energy storage. Other interests include the development of teaching tools, methods, and strategies to improve teaching quality in STEM fields, and theoretical investigation of quantum adiabatic techniques and quantum error-correcting methods.

Kirk St. Amant, Ph.D., Professor and Endowed Chair in Technical Communications, Usability Studies Center, Location: George T. Madison Hall, 278

Shengnian Wang, Ph.D., Associate Professor of Chemical Engineering, The Biomolecule Nanoengineering and Cell Therapy Laboratory
Location:
Institute for Micromanufacturing, 112

Dr. Wang’s research interests involve cell therapy and the nanoengineering of biomolecules. Activities include single DNA dynamics, microrheology and flow-guided assembly using biopolymers along with the development of nanoparticles and nanodevices for non-viral cell therapy. Microfluidics and nanofluidics are integrated to offer such studies excellent platforms. Major equipment includes a CNC mill, an electroporator, a fluorescence microscope, and an atomic force microscope.

Adjunct Faculty

James Cardelli, Ph.D.
CEO Segue Therapeuics LLC
InterTech 1
1501 Kings Highway
Suite 234
Shreveport, LA 71130
E-mail: jim.cardelli@seguetx.com

Wakako Eklund, DNP, NNP-BC
Pediatrix Medical Group
Affiliate of MEDNAX
E-mail: wakako_eklund@mednax.com
Details: http://www.mtnaneocare.com/homepage.cfm?id=1

As a neonatal nurse practitioner, Dr. Eklund has decades of experience in the medical management of ill or premature infants in the Neonatal Intensive Care Setting. Prior to entering the neonatal field, her clinical focus was in adult critical care, especially in the cardiovascular specialty. Her current research interest is in improving the quality of care for the vulnerable population by combining current technologies with relevant neonatal specific knowledge. The aim is to focus on innovative ideas, which can lead to better modalities for care providers to improve patients’ physiological and neurobehavioral outcomes.

Other areas of interest include studying the Global Neonatal Workforce and improving health education and policies that impact neonatal practice and neonatal outcomes worldwide. She collaborates with the Council of International Neonatal Nurses to conduct international research and participates in designing international initiatives.

She has authored textbook chapters in neonatal nursing in the United States and edited the first comprehensive Neonatal Nursing textbook in Japan. Her research in Advanced Practice Nursing, Global Neonatal Workforce, and Neonatal Scope of Practice has been published nationally and internationally. Her publications, including multiple peer-reviewed articles, have appeared in journals in medicine and surgery in addition to nursing.

Pradeep Garg, Ph.D.
Center for Molecular Imaging and Therapy (CMIT) – Shreveport
Subsidiary of Biomedical Research Foundation of Northwest Louisiana
Executive Director
E-mail: pgarg@biomed.org
Details: Center for Molecular Imaging & Therapy

Edward Glasscock, Ph.D.
LSU Health Sciences Center – Shreveport
Department of Cellular Biology and Anatomy
1501 Kings Highway
Shreveport, LA 71130
E-mail: aglas1@lsuhsc.edu

Dr. Glasscock’s research focuses on the molecular and electrophysiological mechanisms that contribute to neurocardiac and cardiorespiratory dysfunction in mouse models of epilepsy and sudden unexplained death in epilepsy (SUDEP). His lab seeks to answer the question of how ion channelopathies causing seizures can give rise to faulty brain-heart-lung interactions leading to SUDEP, the most common cause of mortality in epilepsy. To explore these questions, the lab studies genetic mouse models of epilepsy, utilizing a wide array of in vivo, ex vivo, and in vitro electrophysiological techniques, pharmacology, histology, and molecular analyses.

Anne Hollister, M.D.
Retired Orthopedic Surgeon, LSU Health Sciences Center – Shreveport

Christina Ledbetter, Ph.D.
Pharmacology and Neuroscience
Louisiana State University Health Sciences Center – Shreveport

Georgios Matthaiolampakis, Ph.D.
Assistant Professor of Pharmaceutics
Basic Pharmaceutical Sciences
School of Pharmacy
University of Louisiana at Monroe

Dr. Matthaiolampakis is using polymer-based nanomedicine to promote scientific knowledge in cancer treatment. His lab integrates nanotechnology, imaging science, gene therapy, and cancer biology. Based on pharmaceutical sciences, his research on drug delivery, using modern or more traditional approaches, aims to improve pharmacokinetic, biodistribution and absorption, water solubility and efficacy for smaller and bigger molecules.

The overarching goals for Dr. Matthaiolampakis’ lab are:
– To generate approaches that combine gene therapy with traditional chemotherapy to overcome chemoresistance and inhibit metastasis.
– To develop effective and safe agents for the treatment of prevalent human cancers, such as pancreatic, colon, skin, breast, and lung cancer
– To improve drug targeting utilizing single or dual targeted nanomedicines, by recognizing the dynamic tumor microenvironment and cancer biology.
-To promote student-oriented research to help young scientists transition from the undergraduate to graduate level and beyond with knowledge in analytical methodology, gene therapy, and cancer treatment approaches.

Hai Sun, M.D., Ph.D.
Neurosurgery, Biomedical Engineering
Louisiana State University Health Sciences Center – Shreveport

Faculty in Neurosurgery, Pharmacology, Toxicology and Neuroscience, LSUHSC, 2015 – present
Electrophysiological and Optogenetic studies in Sudden Unexplained Death in Epilepsy (SUDEP) mice model.
o Investigations of structural and functional connectivity abnormalities in patients with neurological disorders including, traumatic brain injuries, multiple sclerosis, and epilepsy.
o Investigation of cortical networks with imaging and electrophysiological techniques in patients with epilepsy.
o Investigating image and electrophysiology-based seizure foci localization.

Oregon Health & Science University 2007 – present 
o Designed and implemented a murine focal neocortical epilepsy model via viral vector induced over-expression of adenosine kinase (ADK) in cortical astrocytes. o Employed an advanced optic coherence tomography (OCT) system to study the physiological changed in cortical neurovascular changes in the epilepsy foci in this model.
o Processed EEG and 3-D imaging data using software or Matlab source codes. Advisors: Ricky Wang, Ph.D. and Detlev Boison, Ph.D.